MTH 812 Advanced Engineering Mathematics (3-0)

Textbook: Linear Algebra and Its Applications, by Gilbert Strang, 3rd Edition, 1988.

ISBN-10: 0155510053, ISBN-13: 978-0155510050

Reference Book: Advanced Linear Algebra (Graduate Texts in Mathematics), by Steve Roman, Springer; 3rd edition, 2007.

ISBN-10: 0387728287, ISBN-13: 978-0387728285

Objective:

To train graduate students in applied mathematics in such a manner that enables them to apply their knowledge in complex engineering subjects.

Course Outcome:

This course will impart the students with advanced level mathematics in engineering in order to enable them to tackle modern day problems in robotics and machine intelligence. **Course Outline:**

Topics	Allocated
	Periods
Introduction to Linear Algebra	45
Linear Equations and their Geometry	
Gauss Elimination and Gauss Jordan Methods	
Decomposition of Matrices into Triangular Factors	
Row Exchanges and Permutation Matrices	
Inverse and Transposes of Matrices	
Special Matrices and Applications	
Vector Spaces and Subspaces	
The Solution of m Equations in n unknowns	
Linear Independence: Basis and Dimensions	
Four Fundamental Subspaces	
Networks and Incidence Matrices	
Linear Transformations	

Perpendicular Vectors and Orthogonal Subspaces	
Inner Products and Projections	
Least Square Approximations	
Orthogonal Bases, Orthogonal Matrices and Gram- Schmidt	
Orthogonalization	
Fourier and Fast Fourier Transform	
Introduction and Properties of the Determinant	
Applications of Determinants	
Introduction to Eigen Values and Eigen Vectors Diagonal Form of a Metric, Difference Equations and Power A ^K	
Differential Equations and the Exponential e ^{Ai}	
Complex Matrices, Symmetric and Orthogonal	
Similarity Transformations	
Minima, Maxima and Saddle Points	
Positive Definiteness of Matrices	
The Finite Element Method Semi-definite and Indefinite Matrices Ax=λMx	